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Abstract
A model for the metastable liquid in terms of holes present in the amorphous
structure is considered using the classical density functional theory (DFT). For
a one component Lennard-Jones liquid we obtain the temperature dependence
of the free volume vf in the metastable state. A temperature T0, similar to
that of the characteristic transition of the free volume theory, is identified by
extrapolating vf(T ) to zero. The Kauzmann temperature TK is also obtained
here by extrapolating the entropy difference between the supercooled state and
that of the crystal to zero. We compare the temperatures T0 and TK obtained
in our model with other two characteristic temperatures for glassy behaviour,
namely (a) the dynamic transition temperature Tc of the mode coupling theory
(MCT) and (b) the glass transition temperature Tg which was obtained by
Leonardo et al (2000 Phys. Rev. Lett. 84 6054) from studying the violation of
the fluctuation–dissipation theorem. All the four temperatures, obtained from
independent routes, are located with respect to the melting temperature Tm in a
manner which is in agreement with experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The physics of a supercooled liquid approaching vitrification is marked by various
characteristic temperatures. The transition of the isotropic liquid into a crystalline state with
long range order occurs at the freezing point Tm. However, most liquids can be supercooled
below the freezing point, bypassing crystallization. The undercooled state is amorphous and is
metastable between the liquid and the crystal. The viscosity of the liquid keeps increasing with
supercooling and when it reaches a value ∼1014 P the relaxation time becomes comparable to
the laboratory timescale, implying that the observed liquid is in an out of equilibrium state. The
temperature at which this happens depends on the cooling rate of the liquid, and its value in
the zero cooling rate limit is referred to as Tg, the calorimetric glass transition temperature [1].
Another temperature T0 is associated with glasses by fitting the relaxation time τ with the
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empirical Vogel–Fulcher form τ ∼ exp[A/(T − T0)], such that τ tend to diverge at T → T0.
In general, the temperature T0 is found to be lower than the calorimetric transition temperature
Tg. Another temperature Tc of the mode coupling theory (MCT) [2] is identified with glassy
behaviour in the temperature range higher than Tg but lower than the freezing point Tm. The
MCT, which takes into account the effects of strongly correlated dynamics of the dense liquid,
predicts a dynamic transition in the liquid at Tc. Although this occurs only in an idealized
version of the MCT, it is now experimentally established that the supercooled liquid undergoes
a dynamic crossover around Tc. Finally, there is the Kauzmann temperature TK which refers
to a limiting point below which the extrapolated entropy of the disordered liquid state would
become less than that of the ordered crystal [3].

The several temperatures listed above are related either to the thermodynamic properties,
or to the dynamic behaviour of the liquid. Both of the above two aspects are crucial in
our understanding of the physics of glassy systems. In this paper we present a simple
statistical mechanical model for the supercooled liquid using classical density functional theory
(DFT). The is motivated to capture the strongly heterogeneous nature of the metastable liquid.
Using the structure of the corresponding homogeneous liquid as the only input in the model,
we obtain here three of the above referred characteristic temperatures, namely T0, TK, and
Tc. This is also compared to Tg obtained in recent studies on the possible violation of the
fluctuation–dissipation theorem (FDT) in the same system. The relative locations of the
different temperatures as computed in the present work (all in the supercooled region below Tm)
are consistent with the corresponding experimental results for a typical glass forming system.

We adopt here a density functional approach [4, 5] for computing the properties of the
amorphous state. The key thermodynamic property of the metastable state we focus on is
the free energy F , treated as a functional of the inhomogeneous density function ρ(r). For
the glassy structure the construction of the density function is guided by the methods adopted
for constructing the same quantity in the DFT for the crystalline state. In the crystal ρ(r)
is represented as a sum of localized density profiles centred around the sites on a regular
lattice with long range order. In the amorphous state the particles are less localized. Note that
the word localization is used somewhat loosely in the present context and is applicable only
over initial timescales. The mean square displacement of a tagged particle in the amorphous
state reaches a plateau over such timescales and is larger than that in a crystal. However,
the long time diffusion coefficient is always finite in the supercooled liquid unlike that in the
perfect crystal. Furthermore, the idea of an underlying (amorphous) lattice is used here for
defining the inhomogeneous density function referred to a timescale over which the atoms
vibrate about their mean positions. Such metastable structures correspond to the local minima
of free energy [6, 7]. In fact for the dense amorphous state, it is observed that some particles are
more mobile than the others [8–11]. Generally in models for glassy behaviour, a timescale for
ergodicity restoration in the supercooled state is always involved either directly or otherwise.
Hence all discussions of particle localization and the random lattice in the present context are
only valid over such timescales.

The occurrence of the voids in a dense structure is the central idea used in the free
volume [12, 13] model of glass transition. The possibility of having voids in a dense structure
has important implications for its transport properties. Here the concepts of liquid-like and
solid-like clusters were introduced from a phenomenological picture of the supercooled liquid
and percolation theory was used to predict that at some critical density the transport process
gets completely frozen, giving rise to very long relaxation times. The disappearance of the
minimum free volume needed for the mass transport is crucial in the jamming of the system.
In the present work we consider the metastable liquid as a heterogeneous structure with an
accumulation of holes. The stability of an amorphous structure is tested relative to that of the
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crystalline or the uniform liquid state. Using the number of voids in the system corresponding
to the optimum free energy we define the free volume at that state, and by extrapolating the
temperature dependence of this free volume to zero we obtain the temperature T0. This is
similar to the transition obtained in the free volume picture. The Kauzmann temperature TK is
computed by calculating the entropy of the amorphous metastable state and comparing it to the
corresponding crystal state entropy.

We organize the paper as follows. In the next two sections we present the density functional
model studied and outline the computation of T0 and TK respectively. Following this in section 4
we indicate how our results can be viewed in the light of information obtained from other
models. In this respect we discuss the temperatures Tc and Tg for the same one component
Lennard-Jones system. We end the paper with a discussion of the results in section 5.

2. The model studied

2.1. Inhomogeneous density function

An important step in the construction of the density functional model for the supercooled state
is the proper parametrization of the inhomogeneous density function ρ(r). We follow closely
the methodology adopted for the DFT of the crystalline state. However, the present case is
unlike that of the crystal in which ρ(r) satisfies the basic symmetry of the crystal structure. The
ensemble averaged density is expressed here as a collection of strongly overlapping Gaussian
profiles [14] centred over a set of lattice sites {Ri} which are distributed randomly [6, 15, 16].

ρ(r) ≡
∑

i

φα(r − Ri ) =
∑

i

(α/π)3/2 exp(−α(r − Ri )
2). (1)

The width of Gaussian profiles is inversely proportional to the square root of α, which from
here on will be referred to as the width parameter. For the amorphous structure it is expected
to be broader than that for the crystal, and represents the higher mean square displacement of
a particle about its mean position. Strictly speaking, for the strongly heterogeneous structures
the width parameters at the different sites of the amorphous lattice should be considered to
be different. However, we will approximate them to be the same here for simplicity. In
this representation, the limit α → 0 is the homogeneous liquid state and higher values of α
represent increasingly localized structures. To account for the presence of voids in the structure,
the parameter space of the density function ρ(r) is extended by considering an underlying
structure {Ri } in which a fraction of the sites do not include a Gaussian profile. Let Np be the
number of lattice sites in volume V out of which N sites are occupied by the particles. ND

sites in the lattice are unoccupied, presenting the same number of holes randomly distributed
(Np = N + ND). The density function for the structure with voids is now represented as

ρ̃(r) = ∑Np

i=1 σiφα(r − Ri), where σi takes the value 1 or 0, depending on whether the site at
Ri is occupied or empty, the distribution of {σi} being statistically independent of that of Ri .
The density function averaged over all positions of the vacancies is obtained as

ρ(r) = A
Np∑

i=1

φα(r − Ri), (2)

where A = N/Np is the average occupation of the site. We assume the void sites or the holes
to be distributed homogeneously throughout the system and hence this fraction is the same
for all the shells around any arbitrary position in the lattice. This results in a corresponding
decrease in the number of occupied sites in each co-ordination shell around any arbitrary point
in the system. This test density function which we will be using in our DFT model for studying
the thermodynamic properties of the metastable state is characterized by the following three
quantities:
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(a) The width parameter α: in the search for the free energy minima which is appropriate for
the heterogeneous state with voids we restrict ourselves to α values much smaller than
those typical for a crystal.

(b) The occupation fraction A: for representing voids in the structure we focus on the case
A < 1.

(c) A set of lattice points Ri distributed on the fixed random structure. In the present
calculation the amorphous lattice is represented in terms of the Bernal packing. This is
further illustrated below.

2.2. Free energy

In order to obtain the inhomogeneous density for the equilibrium state we apply the
thermodynamic extremum principle for the suitable free energy functional. Instead of
considering the coexistence of the two phases at constant pressure, we focus here on the
canonical ensemble (constant N, V , T ) for the single phase and minimize the Helmholtz free
energy for the system. The number of holes in the supercooled state changes by an optimum
arrangement of the particles by varying Np . For the crystalline state this would imply adjusting
the lattice constant so that the vacancy concentration can change in the fixed volume with
the same number of particles. In the amorphous case this implies a somewhat less restrictive
situation of finding the optimum number of holes in the given volume with a fixed number of
particles. The variational parameter corresponding to ND in the density function is A. The
total free energy is computed as a sum of two parts, the ideal gas term and the interaction term,
F[ρ] = F id[ρ] + Fex[ρ]. The ideal gas term of the free energy functional (in units of the
Boltzmann factor kBT = β−1) is given by

F id[ρ] =
∫

dr ρ(r)(ln[∧3ρ(r)] − 1) (3)

∧ being the thermal wavelength [17] appearing due to the momentum variable integration in the
partition function. The RHS of equation (3) is a simple generalization of the ideal gas part of the
free energy for the nonuniform density, i.e. ρ → ρ(r) [18]. The interaction 	Fex part (excess
over the value for the uniform liquid state) is evaluated using the standard expression for the
Ramakrishnan–Yussouff (RY) functional [19] involving a functional Taylor series expansion in
terms of the density fluctuation δρ(r) = ρ(r) − ρ0 around the liquid phase of average density
ρ0 [19, 20],

	Fex = − 1
2

∫
dr1

∫
dr2 c(|r1 − r2|; ρ0) δρ(r1) δρ(r2) (4)

where c(r; ρ0) is the Ornstein–Zernike direct correlation function [17] of the corresponding
homogeneous liquid state. From here on we drop explicitly mentioning the dependence of c(r)
on the thermodynamic parameters like density ρ0 and temperature T to keep notations simple.
Using (1) in (4), we express the product terms (which arise from the product of ρ(r) at two
different points in space) involving the summation over the double indices i and j into a self
part (i = j) and an interaction part (i �= j). The excess free energy difference 	Fex between
the heterogeneous state and the uniform liquid is finally approximated as

	Fex[ρ(r)] = Nρ0

2

∫
dr c (r)− 1

2

Np∑

i=1

∫
dr1

∫
dr2 φα(r1 − Ri )φα(r2 − Ri )c(r12)

− 1
2

Np∑

i, j=1

′
∫

dr1

∫
dr2 φα(r1 − Ri )φα(r2 − R j )c(r12), (5)
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with |r1 − r2| = r12. The prime in the third term on the RHS of (5) implies that i �= j and
the pairwise sum is evaluated in terms of the site to site correlation function gA(R) for the
amorphous structure. The sum over the index j for a fixed i appearing in this term is evaluated
by adding contributions from concentric shells with common origin at the i th site. Adding the
contributions from these shells we obtain an integral over the radial vector R. In this integral,
at a given radius R, the number of occupied sites (each centring a Gaussian profile) in the
corresponding shell is taken as a weight factor. The number of such sites within a shell of radii
R and R + dR is counted as 4ρ0πR2gA(R) dR. In a similar way the second term in the RHS
of (5) also reduces to an integral over R, but now weighted by δ(R) to include only the i = j
case. The total free energy is computed by adding the different contributions coming from the
origin being placed at site i for i = 1–N . For the isotropic system each of these N contributions
are assumed to be the same. Hence combining the second and the third term together we obtain
for the excess free energy per particle

	 f ex = ρ0

2

∫
dr c(r)− 1

2

∫
dr1

∫
dr2

∫
dRφα(r1)φα(r2 − R)c(r12) (Aδ(R)+ ρ0gA(R)) .

(6)

In an exactly similar way using density function (1), the contribution to 	F per particle from
the ideal gas part (given by (3)) is obtained as

f id =
∫

drφα(r)
[

ln

(
∧3

∫
dRφα(r − R) (Aδ(R)+ ρ0gA(R))

)
− 1

]
. (7)

The two expressions (7) and (6) will be the starting point of evaluating the free energy
corresponding to the inhomogeneous density function defined in terms of the parameters α
and A and the underlying amorphous structure represented in terms of the par function gA.

3. Results

For the one component Lennard-Jones (LJ) system the density and temperature are expressed
in standard LJ units of σ−3 and ε/kB respectively. The dependence on these thermodynamic
parameters enters the model in terms of that of the direct correlation function c(r) of the
homogeneous liquid state. c(r) at a given density and temperature is obtained using standard
results of liquid state theory. In doing this we are in fact extending the theories of the normal
liquid in the supercooled domain. For the Lennard-Jones liquid at the high densities studied
here, we use the bridge function [21] method solution for the structure factor. This gives
distinct advantages over choosing the hard sphere system [22] since we are able to study
the temperature dependence of the free volume instead of having only the density as the
relevant variable. The total free energy is minimized with respect to the width parameter α
and the fraction 	 = (1 − A) of holes. This is shown in figure 1 for the chosen density
ρ0 = 1.04 and temperature T = 0.8. The corresponding direct correlation function c(r)
which is used for computing the free energy is shown in figure 2. Apart from the direct
correlation function c(r) the only other input for the present model is the random structure
{Ri } underlying the heterogeneous density distribution of overlapping Gaussian profiles. This
amorphous lattice is obtained in terms of a site–site correlation function gA(R) for which we
have used the Bernal’s random structure [23] of a hard sphere system generated through the
Bennett’s algorithm [24]. We make the approximation gA(R) ≡ gB[R(η/η0)

1/3], where the
gB refers to the pair correlation for the Bernal’s structure. η = πρ0d3/6 denotes the average
packing fraction for the equivalent hard core system of diameter d [17] corresponding to the one
component Lennard-Jones system studied here. The quantity η0 is used as a scaling parameter
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Figure 1. The free energy per particle f on the parameter space of A (X axis) and ασ 2 (Y axis) at
ρ0 = 1.04 and T = 0.8. f is expressed in units of kBT and its value at the minimum is chosen to
be zero. The contours of constant f are shown on the A–α plane.

Figure 2. Direct correlation function c(r) versus r/σ at density ρ0 = 1.04 and temperature T = 0.8
obtained from the bridge function method [21]. The behaviour of c(r) near the minimum of the
Lennard-Jones potential well is magnified in the inset.

for the structure [25], such that at η = η0 the pair correlation gB(R) for the Bernal’s structure
is obtained. The Bernal’s structure at close packing is shown in figure 3. We have followed
here the conventional choice [26] that gB(R) = 0 for σ < R < 1.025σ . The calculation of the
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Figure 3. Site to site correlation function gB(R) versus R/σ obtained in the Bennets algorithm at
closed packing [24].

Figure 4. Variation of the parameter η0 (see text) with the corresponding packing fraction η to
characterize the aperiodic structures used for identifying the metastable amorphous states below
freezing temperature Tm. The inset shows the variation of the corresponding melting temperature
Tm with respect to η.

free energies shows that the amorphous structure become metastable between the liquid and
the crystal state at high densities. In presenting our results here, we choose the parameter η0

for gA(R) such that at a given density ρ0 the heterogeneous state becomes metastable between
the homogeneous liquid and the crystal once the temperature goes below the corresponding
freezing temperature Tm. For ρ0 = 1.0, using the gB at η0 = 0.67 we obtain the free energy
of the amorphous state less than that of the uniform liquid state below T < 1.10 which is the
value of Tm at the density ρ0 = 1.0. In figure 4 we show the variation of the optimum η0 with
the corresponding density ρ0. The Tm values at the same ρ0 values are shown in the inset.
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Figure 5. Comparison (schematic, in one dimension) between the Gaussian profile of the
amorphous structure and that of the crystal, at ρ0 = 1.0 and T = 0.8. Width parameters (α) for the
two displayed Gaussian profiles are set equal to the optimum values at the respective free energy
minima. The inset shows the strong overlapping nature of the density profiles in the amorphous
case as compared to that in the crystal. The Y axis in the inset is shown in the logarithmic scale for
better magnification.

From the minimization of the free energy it turns out that the optimum value of the width
parameter α at the free energy minimum for the amorphous structure is smaller than the typical
α value at the minimum corresponding to a crystalline structure. This shows that the extended
density distribution scenario presented above for the supercooled metastable state is self-
consistent. For the small α values the F id needs to be evaluated numerically [6]. The metastable
free energy minimum obtained, corresponding to the amorphous structures with overlapping
density profiles, has proven to be robust to the variation of different types of interaction
potentials and the input direct correlation function c(r) for large r [15] in equation (4). Using
the results from the present model we can judge the importance of including the presence of
holes in the amorphous structure. If the holes are assumed to be absent, i.e. for A = 1, the free
energy at the minimum (now minimized with respect to the width parameter α only) is higher
than the corresponding optimum free energy obtained in the present calculation. The presence
of voids in the structure is therefore more favourable energetically. In order to demonstrate
the more overlapping nature of the density profiles in the amorphous structure as compared
to that in the crystal, we have shown in figure 5 the corresponding Gaussian profiles (in one
dimension). The respective α values correspond to the free energy minimum representing the
amorphous or the crystalline states. The separations of the Gaussian centres are chosen to be
respectively equal to the position of the first peak in gA(R) for the amorphous state and the
lattice constant for the crystalline state.

We assume that the void sites considered in the model constitute around each of them a
hole of radius Rh ∼ 1/

√
α, where α is the Gaussian width parameter corresponding to the

optimum free energy. Accordingly Rh changes with temperature and becomes smaller with
lowering of the temperature as shown in figure 6. Experimentally, the size of voids in an
amorphous structure can be obtained from positron annihilation lifetime spectroscopy (PALS).
The average size of the holes found in such studies shows a similar decreasing trend with
temperature as displayed for Rh in our theoretical model. The experimental data from two

8



J. Phys.: Condens. Matter 19 (2007) 246107 S P Singh and S P Das

Figure 6. The relative width w̄ of the Gaussian profiles (i.e., ratio of 1/
√
α with the corresponding

value at T = Tg) versus T/Tg at density ρ0 = 1.04. Tg is obtained from [36]. The inset shows the
experimental data for OTP [28] (circle), [27] (square) for the average size of the holes (scaled w.r.t.
its value at T = Tg for OTP) versus T/Tg.

Figure 7. Variation of vacant sites 	 versus temperature T (in units of ε/kB) at density ρ0 = 1.04.

different studies, both with a typical glass forming system OTP [27, 28], are shown in the
inset of figure 6. In our model the corresponding fraction 	 of the number of holes decreases
with temperature. The variation of the optimum value of 	 corresponding to the free energy
minimum with temperature T at constant density ρ0 = 1.04 is shown in figure 7. The ratio vh of
the void associated with the holes (total no of such holes = 	Np) to the total volume V of the
system is obtained as vh = (4/3)πρ0(A−1 − 1)α−3/2. We count the spherical holes of radius

9
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Figure 8. Variation of the relative free volume vf (see text) with T/Tg; the dashed line is the fitted
curve in vf which is going to zero at T0/Tg. The inset shows the variation of vf and T − T0 in the
logarithmic scale at density ρ0 = 1.04.

Rh centred on the sites which are vacant. The amount of void vh approaches a plateau with
decrease of temperature T . This behaviour is demonstrated in figure 8 for constant density
ρ0 = 1.04. If we assume that the excess of vh above the plateau value v0 (say) is what is
available for particle movement, a complete jamming or localization of the particles occurs
when vh → v0. The excess volume vf such that vh = v0 + vf is defined to be the free volume.
A characteristic temperature is identified from the behaviour vf → 0 as T → T0. We obtain
T0 in our model by fitting vh to the form vh = v0 + A(T − T0)

2, as shown in figure 8. A
similar behaviour of the temperature dependence of the free volume was reported recently for
a polymeric system [29] with an exponent 1.46 ± 0.07.

In the thermodynamic approach to understanding the glass transition, the idea of
distribution of free volume [12, 13] in the dense liquid has been used. There it is assumed
that the accumulation of free or excess volume is crucial for mass transport in the liquid. Thus
the temperature T0 at which the amount vf → 0 is analogous to the free volume transition
temperature [13]. The volume v0 is the relative amount of the void in the glassy phase and
it decreases with the increase of liquid density. In figure 9, we plot the saturation value of
v0 versus the corresponding density ρ0. As the liquid becomes more dense the corresponding
low temperature limit of the void also becomes less due to increased compactness. This is
plausible in the context of the present model. It is useful to note also that in our calculation the
free volume approaches zero as T → T0. This implies that the relaxation time should diverge
at this temperature according to the conventional link assumed between the free volume and
glassy relaxation through the Doolittle hypothesis [12, 30]. T0 is similar to the Vogel–Fulcher
temperature though it is not possible to ensure here that they are identical.

The supercooled state of the liquid is also characterized by the Kauzmann temperature
TK [3]. Since we are calculating the thermodynamic properties of the metastable state in our
present DFT model for the Lennard-Jones system, we are able to calculate the entropy of the

10
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Figure 9. Variation of the saturated volume i.e. v0 (as a fraction of the total volume) with respect to
the density ρ0 (in units of σ−3).

Figure 10. The variation of the crystal state entropy Sc (in units of kB) and amorphous state
entropy Sa w.r.t. temperature T (in LJ units of ε/kB) at ρ0 = 1.04. The inset shows the difference
	S = Sa − Sc going to zero at TK.

metastable state as well. The free energy in the supercooled state is obtained as a function
of temperature and from this we compute the entropy S = −(∂F/∂T )V . In the present case
using the Ramakrishnan–Yussouff approach we actually compute only the difference of the free
energy of the metastable supercooled state from that of the uniform liquid state. Therefore, in
order to obtain the entropy of the amorphous state we need an estimate for the entropy of the
uniform liquid state. For this we use results from computer simulation [31] on Lennard-Jones
systems. In figure 10 we plot the change of entropies of the supercooled liquid and that of the

11
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Figure 11. Variation of the excess volume vh (in units of σ 3) with corresponding pressure P (in
units of kBTσ−3) at constant temperature T = 1.0 (in units of ε/kB).

crystal with temperature at constant density ρ0 = 1.04. The data presented in this figure for
the crystal state entropies are computed from the free energy values also obtained in computer
simulations [32]. The difference between the entropies of the crystalline and the amorphous
state is extrapolated to zero to estimate the Kauzmann temperature TK. This extrapolated
temperature presents a limiting situation since the supercooled liquid cannot remain in the
liquid state below T < TK. In that case the entropy of the disordered liquid state (Sa) would
be less than that (Sc) of the crystal. It is useful to note here that the free energy of the liquid
is computed for the aperiodic structures, which are all characterized in terms of the given pair
correlation function gA(R). This only corresponds to one set from the multitude of possibilities
(inherent structures [33]). Our computation of the free energy and hence the entropy is also
restricted by this choice of a specified set of structures.

Pressure dependence of the relaxation behaviour of a glass forming liquids has been of
much current research interest [34, 35]. We have not focused here on studying how the
coexistence of the different phases changes with pressure. However, it is possible to obtain an
estimate for the equilibrium pressure from the free energy of the metastable state. In figure 11
we show the dependence of the pressure in the supercooled liquid (obtained using the relation
P = −(∂F/∂V )T ) on the corresponding free volume fraction vh. With increase of pressure P ,
the free volume vh decreases, indicating more compactness in the structure.

4. Relation to other models

In the previous section we have obtained the values for the Kauzmann temperature TK as well
as the temperature T0 at which the free volume tends to zero. In the present section we consider
the estimates for two more characteristic temperatures in the supercooled region for the same
Lennard-Jones system. This is done here to test the consistency of our model with other studies
on glassy behaviour. In particular, we consider the vitrification or glass transition point Tg,
and the mode coupling dynamic transition point Tc. Before discussing those quantities, it
is useful to note that all these temperatures in the supercooled region should lie below the
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Figure 12. Free energy (in units of kBT ) of the liquid state (dashed line) and fcc crystal (from solid
line) versus T (in units of ε/kB) for the Lennard-Jones system. Crossover of the free energy shows
the freezing point Tm = 1.10 of the LJ system at constant density ρ0σ

3 = 1.00.

freezing point at which the liquid undergoes a thermodynamic transition to a crystalline state.
The thermodynamic state of the many particle system at a given temperature is the one with
lowest free energy. Therefore, in order to obtain Tm, we compare the free energies of the
crystalline state and the uniform liquid state. In figure 12 we display the free energy curves for
the Lennard-Jones system in the homogeneous liquid and solid states for the constant density
ρ0 = 1.0 showing a cross-over from the liquid to the crystalline state at Tm = 1.10. The
results for the free energies of the liquid and crystal, as displayed in figure 12, are obtained
from computer simulation data of [31] and [32] respectively.

4.1. The glass transition temperature Tg

Since one component Lennard-Jones systems tend to crystallize quickly it has particularly
been difficult to supercool them. However, recently Di’Leonardo et al [36] used some special
techniques by including a many body term in the interaction potential to avoid crystallization
in the one component system and identified a temperature similar to Tg for the system. Here
the off-equilibrium dynamics of the monatomic LJ system has been analysed to study the
generalized fluctuation–dissipation theorem (FDT) [37]. In equilibrium, the FDT is satisfied
and therefore its violation signals that the liquid is falling out of equilibrium. A detailed analysis
of the correlation and response functions demonstrated that below a characteristic temperature
the FDT for the system modifies to a form corresponding to the one step replica symmetry
breaking (1RSB) state [38] proposed in the spin glass theory. This is also shown to be close to
the temperature at which the equilibrium potential energy V of the liquid crosses over from the
high temperature form ∼T 3/5 [39] to the harmonic form (∼T ). Tg is thus the temperature at
which the supercooled liquid develops solid-like properties and is naturally identified with the
calorimetric glass transition temperature. The data for Tg from the independent study of [36]
serve as useful information for comparing the relative locations of the various characteristic
temperatures of glassy behaviour in the present context.
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4.2. The mode coupling transition at Tc

Finally, we consider the dynamic transition predicted in the mode-coupling theory of glassy
dynamics [2]. The time correlation of density fluctuations 〈δρ(q, t)δρ(−q, 0)〉 acts as an order
parameter in this transition. To discuss the mode coupling model, we consider the Laplace
transform of the time correlation function (normalized w.r.t. its equal time value) of density
fluctuations at wavenumber q as

ψ(q, z) = 1

z −�2
q{z + iq2�R(q, z)}−1

(8)

where �q = q/
√
βmS(q) is a microscopic frequency of the liquid state, m is the mass of

a liquid particle, and S(q) is the static structure factor of the liquid [17]. �R(q, z) is the
renormalized longitudinal viscosity. The contributions to the transport coefficient �R from
the coupling of the slowly decaying density fluctuations constitute a feedback mechanism for
producing slow dynamics. The mode coupling contribution [40] to �R(q, t) (in addition to a
short time or bare part) at the one loop order is obtained as

�mc(q, t) = λ0

∫
dk

2π3 V (q,k)ψ(q − k, t)ψ(k, t) (9)

where λ0 = (2βρ0m4)−1 and the vertex function V (q,k) is given by

V (q,k) = S(k)S(|q − k|)
[

q̂ · kc(k)+ q̂ · (q − k)c(|q − k|)
q2

]2

. (10)

At low temperatures the feedback effects from the coupling of slowly decaying density
fluctuations are strong enough to make the viscosity diverge. Approaching from the ergodic
liquid side, this occurs at the transition Tc. The time correlation of density fluctuations freezes
beyond this point. The temperature Tc signifies an important cross-over point in the dynamics
of the supercooled liquid. The exact location of the dynamic instability in the self-consistent
model is obtained by solving the basic equations of MCT [40, 41]. In order to explain this
let us assume that in the ideal glassy phase the density correlation function ψ(q, t) develops a
non-decaying part fq in the long time limit, i.e.

ψ(q, t → ∞) = fq (11)

where fq signifies the non-ergodicity parameter (NEP). Using (11) and taking the long time
limit of (8) the following nonlinear integral equation for fq is obtained.

fq

1 − fq
= 1

�2
q

�mc(q, t → ∞) (12)

where �mc(q, t → ∞) is expressed in terms of the static correlation functions of the density.
Equation (12) can be solved numerically by iteration to obtain a final set of fq . The fluid
is considered to have undergone a transition when all the fq simultaneously converge on a
non-zero set of values. The static structure factor of the liquid is used in solving the integral
equations (12) for fq involving �mc(q, t → ∞) and it therefore controls the exact location
of Tc for a specific system. In numerical solution of the integral equations for fq we choose
the upper cut-off � for the wavevector q in the mode coupling integrals such that �σ = 50.
In figure 13 we have shown the nonergodicity parameter fq for the whole wavevector range
at ρ = 1.04 with T = 0.76. It is found that contributions coming from wavevectors above
the cut-off value do not affect the transition point much. For the present case we iterate these
integral equations using the same structure factor corresponding to c(r) used in the DFT model
described above. The temperature Tc is computed for several different densities of the liquid.
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Figure 13. In this figure we have plotted f (q) (non-ergodicity parameter) with qσ at transition
temperature T = 0.76 and at density ρ0 = 1.04. The inset shows the corresponding structure factor
S(q) of the LJ system used in the calculation of f (q) at the same density and temperature with q.

5. Discussion

The present model follows from the general approach of describing the glassy state in
terms of some kind of defects (analogous to those in the crystalline state) which may be
holes [18, 42, 43] or interstitials [44]. The DFT model we present here has been originally
applied for computation of concentration of monovacancies in a crystal [45, 46]. We have used
the idea of holes in the metastable structure. The crucial ingredient here is the parameterized
density function which is identified with the inhomogeneous structure having voids or holes.
The holes are assumed to be distributed uniformly in the system and non-interacting. The
concentration of holes as obtained from the optimization of the free energy is found to be low,
making this basic assumption of the model self-consistent. Using this model we are able to link
several characteristic temperatures for the glassy behaviour from a common standpoint.

The definition of free volume in a dense liquid is not unique and is often based on
phenomenological grounds for different systems [47, 48]. We adopt a definition for the free
volume in an indirect way from the temperature dependence of the void fraction. This is
somewhat unusual given the fact that generally the concept of free volume is linked to a more
microscopic picture, referring to the single particle motion in a cage formed around a single
atom. The computer simulation techniques also investigated the free volume concept adopting
a similar microscopic approach [49, 50]. In the original free volume model of Cohen and Grest
the idea of liquid-like and solid-like shells (classification depending on the amount of free
volume associated with a given atom) was introduced to describe the supercooled state. Based
on this a phenomenological expression for the free energy was proposed and analysed to study
the nature of the free volume transition. In the present work we have used the density functional
approach for computing thermodynamic properties of the amorphous solid-like state, justifying
the role of voids in the structure. Invoking the thermodynamic extremum principle we estimated
the fraction of the volume that is void. Using the observed dependence of void with respect to
temperature we obtain a measure of the free volume (Vf) in the solid. We use only the liquid
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structure factor as an input. However, in our theory we estimate the temperature T0 at which the
free volume goes to zero and the Kauzmann temperature TK only through extrapolation. Thus,
unlike the Cohen–Grest theory, the free volume transition is not explicitly proven in the present
calculation.

We make the following observations on the present methodology of the density functional
calculation.

(A) The density function is expressed in terms of Gaussian profiles centred on a random
structure. The width parameter (α) of the Gaussian plays a crucial role in the characterization
of the supercooled states. The value of α obtained here at the metastable free energy minimum
corresponds to a mean square displacement (of a particle around a lattice site) which is about
three times larger than that in a crystal. This is also expected more naturally since at low
supercooling the particles are not sharply localized. It should be noted that the experimental
observation that localization length in a glass is about 10% of the particle diameter (similar to
a crystal) is a result only applicable in the deeply supercooled glassy state.

(B) In the density functional model we use for the metastable state free energy
an expansion (4) around the homogeneous state. This truncated expansion is a better
approximation for the free energy F since the density inhomogeneities are less abrupt here
than the corresponding crystalline state. This follows from the fact that optimum choice of the
density function ρ(r) in the present model correspond to a relatively small width parameter
value α for the glassy minimum as compared to that for the crystal. Similar metastable
structures (corresponding to low width parameter value α) have also been confirmed [7] using
the location of the amorphous lattice points from simulation data of a hard sphere system.

(C) On the observed consistency between the present model and the Tc values it is useful to
note that the free energy functional chosen for the minimization in the DFT is also the one used
in MCT to obtain the nonlinear equations of fluctuating hydrodynamics. Indeed, the resulting
dynamic nonlinearities, quadratic in density fluctuations, give rise to the integral equations (12)
used for computing Tc in the present context. The mode-coupling model presented here is the
one loop version which is almost exclusively used so far for the MCT literature. On the other
hand, the DFT model that we have used computes the free energy of the inhomogeneous state
keeping only terms to second order in density fluctuations.

(D) We have studied here the one component Lennard-Jones system and compared our
results with the simulation data for the same system as done in [36]. In recent years the
glassy dynamics has also been studied by mapping the nature of the potential energy landscape
(PES) of a model system consisting of a small number of particles which are interacting
through a simple two body potential. For Lennard-Jones potential the binary mixture of two
species [51] has been widely investigated. In such systems the Kauzmann temperature was
obtained as TK = 0.297 (in the Lennard-Jones units for the mixture) for packing fraction
of ηBM = 0.59 [52]. For the one component system we obtain TK = 0.413 and 0.531
(in the Lennard-Jones unit for the one component system) for packing fractions 0.56 and
0.59 respectively. The TK values obtained here for the one component system are therefore
somewhat larger than the same quantity obtained from PES studies of the binary mixture.
However, this is a trend seen in the case of the other characteristic temperatures as well.
Thus the mode coupling temperatures Tc for the one component system are 1.090 and 1.510
at the above two packing fractions (0.58 and 0.59 respectively). For the binary system this
temperature is much lower, Tc = 0.435 for a packing fraction of 0.59.

Finally, in order to present a unified picture of the results of the present work, we display
in figure 14 the temperatures Tc, Tg, T0 and TK for different values of the density ρ0 of the
Lennard-Jones liquid. The mode coupling transition temperature Tc in general lies in between
the freezing point Tm and the glass transition temperature Tg while T0 representing the free
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Figure 14. The characteristic temperatures (all expressed in the LJ units of ε/kB) Tm, Tc, Tg, T0

and TK (see text) for different densities ρ0 (in units of σ 3).

volume transition is always less than Tg. The Kauzmann temperature TK is the lowest lying
even below T0. The ratio of the two temperatures Tc to Tg is in the range (1.27–1.44) in
our model; typical examples of fragile liquids: OTP, 1.19; Salol, 1.21; PC, 1.19. It is worth
noting here that the temperatures Tg and Tc are obtained from considerations related to the
dynamics. On the other hand T0 and TK are obtained in the present model, which is developed
here from structural considerations and thus relates more to the thermodynamic aspects. The
consistency of the different temperatures with the trends seen in experimental data on glass
forming systems reflects the important role of both the structure as well as the dynamics in
glass physics. The holes are treated here to be static and their abundance is inferred invoking
the thermodynamic extremum principle. Understanding the slow dynamics of the holes or the
associated free volume with the help of the generalized hydrodynamic models [53] will be of
interest for future studies.
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